hbase-hdfs-cycling-data

Install this demo on an existing Kubernetes cluster:

$ stackablectl demo install hbase-hdfs-load-cycling-data

This demo should not be run alongside other demos.

System requirements

To run this demo, your system needs at least:

  • 3 cpu units (core/hyperthread)

  • 6GiB memory

  • 16GiB disk storage

Overview

This demo will

  • Install the required Stackable operators.

  • Spin up the following data products:

    • Hbase: An open source distributed, scalable, big data store. This demo uses it to store the cyclist dataset and enable access.

    • HDFS: A distributed file system used to intermediately store the dataset before importing it into Hbase

  • Use distcp to copy a cyclist dataset from an S3 bucket into HDFS.

  • Create HFiles, a File format for hbase consisting of sorted key/value pairs. Both keys and values are byte arrays.

  • Load Hfiles into an existing table via the Importtsv utility, which will load data in TSV or CSV format into HBase.

  • Query data via the hbase shell, which is an interactive shell to execute commands on the created table

You can see the deployed products and their relationship in the following diagram:

overview

Listing the deployed Stackable services

To list the installed Stackable services run the following command: stackablectl stacklet list

$ stackablectl stacklet list
PRODUCT    NAME       NAMESPACE  ENDPOINTS                                               EXTRA INFOS

 hbase      hbase      default    regionserver                  172.18.0.5:32282
                                  ui                            http://172.18.0.5:31527
                                  metrics                       172.18.0.5:31081

 hdfs       hdfs       default    datanode-default-0-metrics    172.18.0.2:31441
                                  datanode-default-0-data       172.18.0.2:32432
                                  datanode-default-0-http       http://172.18.0.2:30758
                                  datanode-default-0-ipc        172.18.0.2:32323
                                  journalnode-default-0-metrics 172.18.0.5:31123
                                  journalnode-default-0-http    http://172.18.0.5:30038
                                  journalnode-default-0-https   https://172.18.0.5:31996
                                  journalnode-default-0-rpc     172.18.0.5:30080
                                  namenode-default-0-metrics    172.18.0.2:32753
                                  namenode-default-0-http       http://172.18.0.2:32475
                                  namenode-default-0-rpc        172.18.0.2:31639
                                  namenode-default-1-metrics    172.18.0.4:32202
                                  namenode-default-1-http       http://172.18.0.4:31486
                                  namenode-default-1-rpc        172.18.0.4:31874

 zookeeper  zookeeper  default    zk                            172.18.0.4:32469

When a product instance has not finished starting yet, the service will have no endpoint. Depending on your internet connectivity, creating all the product instances might take considerable time. A warning might be shown if the product is not ready yet.

Loading data

This demo will run two jobs to automatically load data.

distcp-cycling-data

DistCp (distributed copy) is used for large inter/intra-cluster copying. It uses MapReduce to effect its distribution, error handling, recovery, and reporting. It expands a list of files and directories into input to map tasks, each of which will copy a partition of the files specified in the source list. Therefore, the first Job uses DistCp to copy data from a S3 bucket into HDFS. Below, you’ll see parts from the logs.

Copying s3a://public-backup-nyc-tlc/cycling-tripdata/demo-cycling-tripdata.csv.gz to hdfs://hdfs/data/raw/demo-cycling-tripdata.csv.gz
[LocalJobRunner Map Task Executor #0] mapred.RetriableFileCopyCommand (RetriableFileCopyCommand.java:getTempFile(235)) - Creating temp file: hdfs://hdfs/data/raw/.distcp.tmp.attempt_local60745921_0001_m_000000_0.1663687068145
[LocalJobRunner Map Task Executor #0] mapred.RetriableFileCopyCommand (RetriableFileCopyCommand.java:doCopy(127)) - Writing to temporary target file path hdfs://hdfs/data/raw/.distcp.tmp.attempt_local60745921_0001_m_000000_0.1663687068145
[LocalJobRunner Map Task Executor #0] mapred.RetriableFileCopyCommand (RetriableFileCopyCommand.java:doCopy(153)) - Renaming temporary target file path hdfs://hdfs/data/raw/.distcp.tmp.attempt_local60745921_0001_m_000000_0.1663687068145 to hdfs://hdfs/data/raw/demo-cycling-tripdata.csv.gz
[LocalJobRunner Map Task Executor #0] mapred.RetriableFileCopyCommand (RetriableFileCopyCommand.java:doCopy(157)) - Completed writing hdfs://hdfs/data/raw/demo-cycling-tripdata.csv.gz (3342891 bytes)
[LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(634)) -
[LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:done(1244)) - Task:attempt_local60745921_0001_m_000000_0 is done. And is in the process of committing
[LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(634)) -
[LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:commit(1421)) - Task attempt_local60745921_0001_m_000000_0 is allowed to commit now
[LocalJobRunner Map Task Executor #0] output.FileOutputCommitter (FileOutputCommitter.java:commitTask(609)) - Saved output of task 'attempt_local60745921_0001_m_000000_0' to file:/tmp/hadoop/mapred/staging/stackable339030898/.staging/_distcp-1760904616/_logs
[LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(634)) - 100.0% Copying s3a://public-backup-nyc-tlc/cycling-tripdata/demo-cycling-tripdata.csv.gz to hdfs://hdfs/data/raw/demo-cycling-tripdata.csv.gz

create-hfile-and-import-to-hbase

The second Job consists of 2 steps.

First, we use org.apache.hadoop.hbase.mapreduce.ImportTsv (see ImportTsv Docs) to create a table and Hfiles. Hfile is an Hbase dedicated file format which is performance optimized for hbase. It stores meta-information about the data and thus increases the performance of hbase. When connecting to the hbase master, opening a hbase shell and executing list, you will see the created table. However, it’ll contain 0 rows at this point. You can connect to the shell via:

$ kubectl exec -it hbase-master-default-0 -- bin/hbase shell
If you use k9s, you can drill into the hbase-master-default-0 pod and execute bin/hbase shell.
list
TABLE
cycling-tripdata

Secondly, we’ll use org.apache.hadoop.hbase.tool.LoadIncrementalHFiles (see bulk load docs) to import the Hfiles into the table and ingest rows.

Now we will see how many rows are in the cycling-tripdata table:

count 'cycling-tripdata'

See below for a partial result:

Current count: 1000, row: 02FD41C2518CCF81
Current count: 2000, row: 06022E151BC79CE0
Current count: 3000, row: 090E4E73A888604A
...
Current count: 82000, row: F7A8C86949FD9B1B
Current count: 83000, row: FA9AA8F17E766FD5
Current count: 84000, row: FDBD9EC46964C103
84777 row(s)
Took 13.4666 seconds
=> 84777

Inspecting the Table

You can now use the table and the data. You can use all available hbase shell commands.

describe 'cycling-tripdata'

Below, you’ll see the table description.

Table cycling-tripdata is ENABLED
cycling-tripdata
COLUMN FAMILIES DESCRIPTION
{NAME => 'end_lat', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'end_lng', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'end_station_id', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'end_station_name', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'ended_at', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'member_casual', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'rideable_type', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'start_lat', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'start_lng', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'start_station_id', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'start_station_name', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{NAME => 'started_at', BLOOMFILTER => 'ROW', IN_MEMORY => 'false', VERSIONS => '1', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', COMPRESSION => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}

Accessing the Hbase web interface

Run stackablectl stacklet list to get the address of the ui-http endpoint. If the UI is unavailable, please do a port-forward kubectl port-forward hbase-master-default-0 16010.

The Hbase web UI will give you information on the status and metrics of your Hbase cluster. See below for the start page.

hbase ui start page

From the start page you can check more details, for example a list of created tables.

hbase table ui

Accessing the HDFS web interface

You can also see HDFS details via a UI by running stackablectl stacklet list and following the link next to one of the namenodes.

Below you will see the overview of your HDFS cluster.

hdfs overview

The UI will give you information on the datanodes via the datanodes tab.

hdfs datanode

You can also browse the filesystem via the Utilities menu.

hdfs data

The raw data from the distcp job can be found here.

hdfs data raw

The structure of the Hfiles can be seen here.

hdfs data hfile